DOI:10.1039/b416535g

COMMUNICATION

Memory of chirality in intramolecular conjugate addition of
enolates: a novel access to nitrogen heterocycles with contiguous

quaternary and tertiary stereocenters

Takeo Kawabata,* Swapan Majumdar, Kazunori Tsubaki and Daiki Monguchi
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
E-mail: kawabata@scl.kyoto-u.ac.jp; Fax: +81 774 38 3197

Received 29th October 2004, Accepted 11th March 2005
First published as an Advance Article on the web 30th March 2005

Nitrogen heterocycles with contiguous quaternary and ter-
tiary stereocenters have been prepared in high enantiomeric
purity by intramolecular conjugate addition of enolates
generated from o-amino acid derivatives via memory of
chirality.

The stereoselective construction of chiral quaternary stereo-
centers is one of the most challenging tasks in synthetic
organic chemistry." We have developed a direct method for
the enantioselective construction of a,a-disubstituted a-amino
acids from o-amino acids vie memory of chirality.** Under
these conditions, o-methylation of N-fert-butoxycarbonyl(Boc)-
N-methoxymethyl(MOM)-a-amino acid derivatives takes place
in up to 93% ee without the aid of external chiral sources such as
chiral auxiliaries or chiral catalysts [Scheme 1 (1)].* A chiral non-
racemic enolate A (R = CH,Ph, X = CH,0OMe) with a chiral
C-N axis has been proposed as the crucial intermediate for this
novel asymmetric induction, whose racemization barrier is 16.0
kcal mol~' and the corresponding half-life of racemizationis 22 h
at —78 °C. We further developed a route for the straightforward
synthesis of cyclic amino acids with a quaternary stereocenter
from readily available a-amino acids vie memory of chirality
[Scheme 1 (2)].> An axially chiral enolate intermediate A [X =
(CH,),Br] was also proposed to be a crucial intermediate.
Experimental evidence for the axially chiral enolate inter-
mediates A involves the observation that o-alkylation of B
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and C gave racemic products, respectively, under the similar
conditions to those in Scheme 1 because the enolates generated
from these derivatives cannot be axially chiral along the
C-N axis.

We report here a new method for the asymmetric construction
of highly substituted nitrogen heterocycles via the intramolecu-
lar conjugate addition of enolates generated from a-amino acid
derivatives according to the strategy in Scheme 2. To preserve
chirality during enolate formation and the subsequent C-C bond
formation, the choice of the protecting group on the nitrogen
of the o-amino acids is critical. According to our previous
results on the inter- and intra-molecular alkylation of g-amino
acid derivatives,>** where the Boc group is essential for the
generation of a chiral non-racemic enolate intermediate of high
enantiomeric purity, the N-Boc-a-amino acid derivative with a
Michael acceptor 1 was designed as a substrate for the present
purpose. Substrate 1 was readily prepared from o-amino acid
ethyl esters through N-alkylation with an o-bromo-1-alkene,
introduction of a Boc group to the nitrogen, ozonolysis of the
double bond, and a Wittig reaction.

The conditions for the intramolecular conjugate addition of
the enolate generated from la were examined (Table 1). Treat-
ment of la with potassium hexamethyldisilazide (KHMDS)
in THF at —78 °C for 30 min gave 2 as a sole detectable
diastereomer in 51% ee and in 65% yield (entry 1). The relatively
low ee of 2 was thought to be the result of the equilibrium
between the enolate and the Michael adduct; however, this
seems unlikely because shorter (5 min) and longer (60 min)
reaction times did not significantly alter the ee of 2: 50% ee after
5min, 51% ee after 30 min, and 47% ee after 60 min (entries 1-3).
Use of a 4 : 1 mixture of toluene-THF as a solvent, which is the
best solvent for the intermolecular asymmetric alkylation,’* is
not suitable for the present purpose in terms of the low ee of
the product (19% ee, entry 4). The reaction in DMF gavea 1:1
mixture of 2 (84% ee) and 3 (83% ee) in a combined yield of 68%
(entry 5). Use of a 1 : 1 mixture of DMF and THF gave the best
result. Treatment of 1a with KHMDS in DMF-THF (1 : 1) gave
a4 :1mixture of 2 (91% ee) and 3 (94% ee) in a combined yield of
81% (entry 6).° Use of lithium amide bases did not give any of the
cyclization products (entries 7 and 8). The relative and absolute
configurations of the major product 2 were determined to be
(2R,3S) by an X-ray crystallographic analysis of its derivative
4 which was prepared through selective deprotection of the N-
Boc group of 2 with 1 M HCl in ethyl acetate, N-benzoylation,
deprotection of the fert-butyl ester with 4 M HCl in ethyl acetate,
followed by condensation with (R)-1-(1-naphthyl)ethylamine
(Fig. 1).” Thus, the intramolecular conjugate addition of 1a took
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Table 1 Asymmetric intramolecular conjugate addition of 1a

Et0,C —CO,t-Bu EIO;C CO,t-Bu
CO. 3
Ph oEt base Ph/””!@ + ph/""kf(),
BDC’NN‘COQt_BU solvent BOC’N BD(:’N
1a 2 3
Yield (0 ())b

Entry Base® Solvent Temp/°C, time/min 2 (Y% ee) 3 (% ee)
1 KHMDS? THF —78, 30 65 (51) ¢
2 KHMDS? THF —78,5 61 (50) €
3 KHMDS? THF —78, 60 61 (47) e
4 KHMDS? Toluene-THF (4: 1) —78, 30 56 (19) e
5 KHMDS? DMF —60, 30 34 (84) 34 (83)
6 KHMDS? DMF-THF (1:1) —78, 30 65(91) 16 (94)
7 LHMDS DMF-THF (1:1) —78, 30 ©g e
8 LTMP* DMF-THF (1:1) —78, 30 e e

“1.1 Equiv. of base was used. ® Isolated yield. ¢ Ee was determined with the corresponding N-benzoyl derivative by HPLC analysis. ¢ Potassium
hexamethyldisilazide. ¢ Not detected. /Lithium hexamethyldisilazide. ¢ Several unidentified products. * Lithium 2,2,6,6-tetramethylpiperidide.

"Recovery of starting material.
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Fig. 1 X-Ray structure of 4.

place with a retention of configuration at C(2) and a relative
trans-stereochemistry between the two ester groups.
Six-membered ring cyclization by intramolecular conjugate
addition took place with almost complete stereoselectivity
(Scheme 3). Treatment of 1b with KHMDS in DMF-THF
(1:1)at =78 °C for 30 min gave 5 (97% ee) as a single detectable
diastereomer in 66% yield. While the absolute configuration
of 5 has not yet been determined, the relative stereochemistry
was confirmed from the NOESY spectrum. Similarly, tyrosine
derivative 1c gave 6 in 98% ee and in 74% yield. In these
reactions, 2,2,3-trisubstituted piperidines were obtained in high

enantioselectivity simply by the base-treatment of the precursors
derived from o-amino acids. Seven-membered ring cyclization
from 1d proceeded to give 7 in 91% ee, albeit in only 19%
yield. Compounds 2, 3, and 5-7 are regarded as precursors for
conformationally constrained L-glutamate analogues.®

The present protocol was applied to the synthesis of a
multi-substituted tetrahydroisoquinoline derivative. A precur-
sor for cyclization, 8, was prepared in 66% overall yield by
coupling of an alanine ethyl ester and (E)-tert-butyl 3-(2-
bromomethylphenyl)acrylate followed by the introduction of a
Boc group. Treatment of 8 with KHMDS in THF-DMF (1 : 1)
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at —78 °C for 30 min gave 9 in 95% ee and in 94% yield as a
single diastereomer (Scheme 4). Thus, a highly stereoselective
and concise route to 3,3,4-trisubstituted tetrahydroisoquinoline
has been developed.

In summary, pyrrolidine-, piperidine-, and tetrahydroiso-
quinoline-derivatives with contiguous quaternary and tertiary
stereocenters were prepared in high enantiomeric purity simply
by base-treatment of the acyclic precursor derived from o-
amino acids in the absence of external chiral sources. This
provides a straightforward route to multi-substituted nitrogen
heterocycles, which are potentially useful as pharmacophores
for drug discovery® and also as possible intermediates for natural
product synthesis."
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